
The Robust Beauty of Majority Rules in Group Decisions

Reid Hastie
University of Chicago

Tatsuya Kameda
Hokkaido University

How should groups make decisions? The authors provide an original evaluation of 9 group decision
rules based on their adaptive success in a simulated test bed environment. When the adaptive success
standard is applied, the majority and plurality rules fare quite well, performing at levels comparable
to much more resource-demanding rules such as an individual judgment averaging rule. The plurality
rule matches the computationally demanding Condorcet majority winner that is standard in evalu-
ations of preferential choice. The authors also test the results from their theoretical analysis in a
behavioral study of nominal human group decisions, and the essential findings are confirmed
empirically. The conclusions of the present analysis support the popularity of majority and plurality
rules in truth-seeking group decisions.

Human societies rely on groups to make many important
decisions. There is a deep-seated belief that groups are more
accurate and more just than individuals. This belief is based on
the commonsense notion that a group has more problem-solving
resources than any individual member because “several heads
are better than one.” The belief also depends on the assumption
that the group process is effective at eliciting and integrating
its members’ beliefs and preferences. The most popular deci-
sion rule in groups of all types is the majority rule. The majority
rule has many virtues: It is “transparent” and the easiest of all
social decision rules to execute; it is based on a simple principle
of equal participation and equal power; it encourages the ex-
pression of sincere personal beliefs, rather than conformity; and
it yields more effective problem solutions than typical (and
sometimes even most accurate) members could achieve. The
present article is an exploration of the capacity of the majority
rule and the closely related plurality rule to produce accurate
judgments.

The majority rule is popular across the full spectrum of
human groups from hunter– gatherer tribal societies (Boehm,
1996; Boyd & Richerson, 1985; Wilson, 1994) to modern
industrial democracies (Mueller, 1989). Certainly, in ad hoc
Western groups, it seems to be the decision rule most frequently
adopted to make formal social choices in popular elections,

legislatures, and committees. The second most popular explicit
procedure in committees is an autocratic “leader decides”
rule (e.g., Smith & Bliege-Bird, 2000). However, when no
explicit decision rule is adopted by a group or when a desig-
nated leader appears to make the group’s decision, the implicit
decision rule is usually still essentially a majority rule (cf.
Davis, 1973, 1982; Kerr, Stasser, & Davis, 1979; Stasser, Kerr,
& Davis, 1980). Even when a small group has an explicit rule
other than a majority rule, the largest initial faction, that is, the
plurality, is usually the ultimate winner (cf. Hastie, Penrod, &
Pennington, 1983; Kameda, Tindale, & Davis, 2003; Kerr &
Tindale, 2004).

There are several versions of majoritarian rules used in
human societies. The most popular version in America is a
majority–plurality rule in which the candidate that receives
the most votes wins (plurality rule hereinafter). In America,
this is the rule that is applied to determine the presidential
candidate favored by the popular vote or, more important,
the candidate selected to receive each state’s electoral col-
lege votes. The majoritarian rule, and the focus of much
theoretical analysis, is called a Condorcet majority rule af-
ter Marie-Jean-Antoine-Nicholas de Caritat Condorcet, the
French philosopher who cofounded modern social choice the-
ory (Condorcet majority hereinafter). Under a Condorcet ma-
jority rule the candidate who receives more than one half of the
votes cast is selected (nb, if there are abstentions, the majority
winner can receive less than one half of all possible votes).
When there are more than two candidates, all possible two-
candidate elections are held, and a Condorcet winner is declared
if any candidate wins all the pairwise elections by a simple
majority.

When there are only two candidates, majority and plurality
yield identical results. However, there are many examples,
when there are more than two candidates, in which the majority
and the plurality rule do not select the same winners. For
example, in the 2000 United States presidential election popular
vote, there was no simple majority winner, though Gore was the
winner by a plurality rule (there were three candidates who
received more than 1% of votes cast: Gore, Bush, and Nader).
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It is likely that Gore would also have been the Condorcet
winner, but since pairwise elections were not held, there is no
way to know this for certain.1

One goal of the present analysis is to explore how the perfor-
mance of the plurality rule and the Condorcet majority rule con-
verge and diverge in ecologically plausible, truth-seeking, group
decision tasks. In contrast to the case of political elections, our
evaluation assumes that there is a general objective utility to the
group decision and that individuals all have the same ultimate
preferences. However, when there is preferential conflict, differ-
ences in individuals’ votes are produced by differences in individ-
ual utility functions (e.g., “I would be more satisfied if Gore were
president, you would be more satisfied if Bush were president”)
and by differences in knowledge (e.g., “I do not realize it, but Bush
would actually provide me with a higher personal utility”). In the
present analysis, we focus on the case in which there is no conflict
between members with respect to personal preferences, so an
outcome that is better for any one member is better for everyone.
For example, when a committee of investors decides whether to
purchase shares of stock, all members can be assumed to seek the
decision that will maximize profits. However, disagreements
among members’ judgments about which investment will yield the
highest profit introduce differences in their choices and votes. Yet,
ultimately, in these cases, the best group decision rule is the rule
that is most accurate in achieving generally valued outcomes.

It is likely that majority and plurality rules evolved in human
society in group foraging situations in which a band of animal or
human foragers needed to choose a common direction to search.
There is evidence that groups of nonhuman animals make collec-
tive decisions in accord with a majority rule (Conradt & Roper,
2003; Seeley & Burhman, 1999) and, as we noted above, it is a
popular rule in primordial hunter–gather societies. In the present
research, we measure the success of several social decision rules
on the basis of the correspondence to reality or accuracy of
judgments and decisions rendered by each rule (see Hammond,
1996; Hastie & Rasinski, 1988, for discussions of the correspond
ence–coherence distinction).

Accuracy as a Criterion for Good Group Decision Rules

There is a general presumption that groups are more accurate
than individual decision makers. This presumption is part of the
rationale for the use of group decisions in many human enterprises.
One useful characteristic of group judgment and decision strate-
gies is adaptive flexibility in choice of social problem-solving
strategies (Hinsz, Tindale, & Vollrath, 1997). For example, some
intellectual task performances are best described by a “truth-wins”
or “truth supported wins” strategy; these are tasks in which the
most competent group members can demonstrate the quality of
their superior solutions so that the group tends to choose the best
solution generated by any of its members (Laughlin, 1980; Laugh-
lin & Ellis, 1986). Another opportunity for superior group perfor-
mance occurs when the task is one in which no single member has
sufficient information to solve the problem, but different members
have the necessary information. In such cases, if information
pooling is effective and the group follows a majority or plurality
decision rule, the group can solve a problem at which no individual
member could succeed (e.g., Stasser, 2003; Stasser & Titus, 1985).

A useful property of the majority rule in truth-seeking tasks is
that it encourages the sincere expression of personal beliefs. Im-
position of a majority rule can shatter error-prone information
cascades by encouraging group members to rely on their personal
beliefs rather than conforming to others’ opinions. For example,
Hung and Plott (2001; see also Anderson & Holt, 1997) created
information cascades in a Bayesian judgment task. Each partici-
pant in the experiment observed a private information sample from
one of two urns. Their task was to identify the source urn from
which the sample had been drawn. When early respondents in a
sequential judgment task favored one urn, subsequent respondents
were likely to ignore the information in their private samples and
conform to the prior choices. Ironically, a Bayesian analysis shows
that this is what people should do, ignore their own private
information and conform to the prior members’ opinions. Thus,
this task has the insidious property of producing rational but
erroneous information cascades when the first members have
drawn misleading samples, a condition that occurs on approxi-
mately one quarter of the trials under the conditions in Hung and
Plott’s experiments. However, most important, Hung and Plott
demonstrated that when incentives were shifted to reward group
accuracy and a majority rule was imposed, erroneous cascades
were almost completely eliminated.

However, groups rarely outperform their best members (Gigone
& Hastie, 1997; Hastie, 1986; Hill, 1982; cf. Steiner, 1972). In the
most common group “judgmental tasks,” involving uncertainty
and inconclusive or delayed feedback about the quality of solu-
tions, groups usually perform at about the level of a typical median
member. The modest performance of groups in judgmental tasks is
surprising on both intuitive and theoretical grounds. For example,
Condorcet’s (1785/1994) jury theorem (distinct from his voting
paradox) implies that if members of a group are individually able
to predict an uncertain outcome at a level better than chance, then
a group of sincere voters, relying on a majority decision rule, will
approach perfect accuracy, as the number of members increases
(cf. Austin-Smith & Banks, 1996; Bottom, Ladha, & Miller, 2002;
Grofman & Feld, 1988; Nitzan & Paroush, 1985; Young, 1988).
Thus, in theory, the majority rule is a powerful device for ampli-
fying the accuracy of modestly accurate individual judgments.
However, decades of research by social psychologists have pro-
vided explanations for the less-than-ideal performance of most
social groups. “Process loss” saps the resources provided by indi-
vidual members through coordination failures (Steiner, 1972),
social loafing (Latané, Williams, & Harkins, 1979), groupthink
(Janis, 1972; Turner & Pratkanis, 1998), and interpersonal com-
petition (McGrath, 1984).

There have been only a few behavioral tests of the accuracy or
adaptive success of group decision rules. The best example of an
accuracy test is provided by research conducted by Sorkin and his

1 A more dramatic example is provided by the French presidential
election in 2002, with nine major candidates, in which Chirac (who won
approximately 20% of the popular vote), Le Pen (17%), and Jospin (16%)
were the top three candidates. Chirac, the plurality winner, won over Le
Pen in a two-candidate runoff election. Though it is probable that Jospin
would have easily won over Le Pen in a pairwise election and would have
been a strong contender in a two-candidate runoff against Chirac.
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colleagues, who studied performance in a visual signal detection
task by individuals and small groups with assigned social decision
rules (Sorkin, Hays, & West, 2001; Sorkin, West, & Robinson,
1998). Others have manipulated group decision rules in legal
decision-making tasks, but these tasks do not permit an analysis of
accuracy, as there is no firm criterion for correctness of verdicts
(e.g., Davis, Kerr, Atkin, Holt, & Meek, 1975; Hastie et al., 1983;
Saks, 1977). In Sorkin’s experiments, five- and seven-member
groups performed a difficult two-alternative, visual detection task
under a simple majority rule, as well as under supermajority and
unanimity rules. Groups reliably outperformed individuals, and
simple majority rule groups were most accurate on a d� metric for
detection sensitivity. However, groups did not perform at the level
predicted by an ideal observer model (based on the individual
members’ levels of accuracy), and Sorkin speculated that some
“social loafing” occurred in the groups. In recent theoretical work,
Sorkin has argued that the unanimity rule may have advantages
when extensive information pooling and deliberation are part of
the group decision process (Sorkin, Shenghua, & Itzkowitz, 2004).

Notice that the majority rules introduce an asymmetry into
two-alternative decisions when there is a default option (“select
‘no signal,’ unless a majority votes ‘signal’”). Such a default
option effectively moves the group decision criterion to more strict
levels as the majority quorum increases from simple (one-vote)
majority toward unanimity. This means that the types of errors
made under the different decision rules are distributed differently
between Type I (signal present/no signal present, false alarms) and
Type II (no signal/signal present, misses) as the rules change. The
d� measure is a useful global accuracy score under these condi-
tions, but it would be a misstatement to say that the simple

one-vote majority is most accurate for all possible accuracy scores.
Guarnaschelli, McKelvey, and Palfrey (2000) also tested the

accuracy of majority and unanimity decision rules in the context of
a simulated jury decision task. Their Bayesian judgment task was
an abstract version of the acquit/convict decision addressed by
criminal trial juries. Three-person and six-person groups were
instructed to infer which of two urns was the source of a sample of
colored balls, but the analogy to a jury decision was never made
explicit to the subjects. As in Sorkin’s signal detection task, the
jury decision task creates an asymmetry between the two possible
decision options: Innocent (acquit, “presume innocent”) is the
default, and a quorum (majority or unanimity) is required to defeat
the default option and convict the defendant. Thus, accuracy must
be assessed conditional on the true state of the world (truly
innocent, truly guilty). As might be expected when the true state
was innocent (the blue urn had been selected), the unanimity rule
had an advantage; when it was guilty, the majority rule had the
advantage. Thus, the empirical result is equivocal on the question
of global accuracy. Perhaps the most important contribution of the
Guarnaschelli et al. study is the result that allowing discussion
consistently increased accuracy (straw polls before a final binding
vote). Furthermore, their empirical study is an antidote to a pre-
vious, controversial article that argued, on the basis of a theoretical
model (not behavioral data), that the unanimity rule without dis-
cussion was universally inferior to the majority rule (Feddersen &
Pesendorfer, 1998).

The present research develops a correspondence-based evalua-
tion of performance accuracy under nine group decision rules
(summarized in Table 1). We construct a test bed environment in
which simulated groups attempted to choose the best alternative

Table 1
Nine Group Decision Rules

Group decision rule Algorithm summary

Individual
cognitive

effort
Social
effort

Average winner Each member estimates the value of each alternative, and the group computes each
alternative’s mean estimated value and chooses the alternative with the highest mean.

High High

Median winner Each member estimates the value of each alternative, and the group computes each
alternative’s median estimated value and chooses the alternative with the highest
median.

High High

Davis’s (1996) SJS
weighted average
winner

Each member estimates the value of each alternative, and the group assigns a weighted
average value to each alternative (exponential weighting function assigns higher
weights to central, shared estimates) and chooses the alternative with the highest
weighted average value.

High High

Borda rank winner Each member ranks all alternatives by estimated value, and the group assigns a Borda
rank score to each location (the sum of the individual ranks for each alternative) and
chooses the alternative with the lowest (most favorable) score.

High High

Condorcet majority
rule

All pairwise elections are held (e.g., 45 for 10 candidates), and the alternative that wins
all elections is the Condorcet winner (it is possible for there to be no unique overall
winner).

Low High

Majority/plurality
rule

Each member assigns one vote to the alternative with the highest estimated value, and the
alternative receiving the most votes is chosen.

Low Low

Best member rule Member who has achieved the highest individual accuracy in estimating alternative values
is selected, and this member’s first choices become the group’s choices.

High Medium

Random member
rule

On each trial, one member is selected at random, and this member’s first choices become
the group’s choices.

Low Low

Group satisficing
rule

On each trial, alternatives are considered one at a time in a random order; the first
alternative for which all members’ value estimates exceed aspiration thresholds is
chosen by the group.

Medium Medium

Note. SJS � social judgment scheme.
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out of a choice set of 10 alternatives. Members of the simulated
groups had judgment policies that enabled each member to esti-
mate a value for each of the 10 alternatives. These individual
estimates were then combined with a group decision rule to make
a group choice from the set of 10 alternatives. The use of 10
alternatives, rather than a default versus nondefault dichotomous
choice, made all of the options equivalent and changed the task
from the Sorkin and Guarnaschelli et al. studies of majority rule
accuracy. The larger choice set also allowed us to compare the
performance of choice rules that would be indistinguishable with
smaller (for example, two-candidate) elections.

Social Choice Theory Analyses of the Goodness of Group
Decision Rules

Historically, most theoretical evaluations of group decision rules
have focused on preferential conflict resolution and relied on
analytical methods to evaluate idealized performance of alternative
rules. The focal decision involves differences in individual group
members’ personal utility functions that lead to conflicting pref-
erences—political elections are the classic example of this situa-
tion. Condorcet, Jean Charles de Borda (the other cofounder of
modern social choice theory), and other philosophers writing at the
time of the French Revolution were concerned with finding a good
social choice rule to use in the new French republic. Condorcet
favored the simple majority rule, but he discovered that under
some conditions, in multicandidate elections, a unique Condorcet
majority winner does not exist. Indeed, he showed the majority
rule could even produce an intransitive ordering of candidates.
Condorcet’s “Voter’s Paradox” is a demonstration that groups with
more than two members who have different but individually ra-
tional, stable, transitive preferences could exhibit voting cycles
under a majority decision rule. A voting cycle is an intransitivity
such that, for example, the group prefers Candidate A over Can-
didate B, B over C, but C over A; even though any individual
member’s preferences are completely transitive. Condorcet was
disappointed, as he had hoped that a democratic voting system
could be proven superior to a monarchy on logical grounds.
Instead, he discovered a fundamental flaw in the majority rule.

Voting cycles have been identified in empirical settings, includ-
ing actual elections and legislatures (e.g., Chamberlin, Cohen, &
Coombs, 1984). The paradox was later analyzed extensively by
Arrow (1951), who showed that four simple and desirable prop-
erties of any democratic system could not be satisfied by any social
choice procedure (MacKay [1980] and Saari [2001] provide ac-
cessible expositions of Arrow’s analysis and its implications;
McLean and Hewitt [1994] provide a review of relevant analytical
and empirical results).

Although no known voting rule survives the social choice anal-
ysis unscathed, there have been many efforts to show that some
rules are better than others. Several proofs exist showing the
efficacy of the Condorcet majority rule, if voters’ preferences fit
certain constraints. Black (1958) showed that if candidates can be
ordered consistently, with different voters’ ideal points located on
that dimension (each voter’s preferences are “single-peaked” on a
common dimension, e.g., conservative—liberal for American po-
litical candidates), majority cycles will never occur. Sen (1966)
proved that more general constraint, “value restriction,” on indi-

vidual preferences would also guarantee no cycles (for every three
candidates there is one candidate that no voter ranks in the middle).
There are also several empirical studies of actual elections that
show potential cycles are rare, given realistic preference orderings
of candidates by voters (e.g., Feld & Grofman, 1992; Regenwetter,
Adams, & Grofman, 2002; Tsetlin & Regenwetter, 2003).

Another argument in support of the Condorcet majority rule
derives conditions under which the rule is likely to produce max-
ima or equilibriums in a general social welfare function, calculated
from individual voters’ utility functions. For example, Orbell and
Wilson (1978) showed that under certain conditions (e.g., when the
opportunity cost of cooperation is low) the majority rule is effec-
tive at finding the social welfare-maximizing equilibrium solution.
However, these conditions appear to be rare in actual social con-
flict situations.

In the present analysis, we treat the Condorcet majority rule and
the plurality rule as closely related. However, if all possible
candidates are considered simultaneously, the plurality rule is a
scoring rule in that every candidate is assigned a fixed score, based
on the number of voters who ranked it first. This means the
plurality rule is not subject to intransitive cycles, as is the Con-
dorcet majority rule. However, the plurality rule is sensitive to
changes in the composition of the choice set. For example, adding
a third, low-popularity candidate can have dramatic effects on the
outcome of an election between two much stronger candidates, as
witnessed by the Gore–Bush–Nader result in the 2000 presidential
election.

Our research demonstrates that in truth-seeking decision-
making groups—in which members have generally adaptive,
but not perfect judgment policies—the plurality rule is very
likely to select the Condorcet winner if one exists; and one
almost always does exist. As we see it, the overriding motiva-
tion for voters to select the objectively best outcome acts in a
similar manner to constraints on the individual preference func-
tions (proposed by Black, Sen, and others; see previous discus-
sion). Constraints such as single-peakedness and value restric-
tion reduce the rate of pathological outcomes for a rule like the
Condorcet majority. Similarly, constraints on preferences intro-
duced by adaptive judgment “functions” for members of a
group (that is, all the members perceive some glimmer of the
true state of the world) make certain forms of preference
conflict very unlikely to occur in truth-seeking groups.

Group Decision Rules

Four of the group decision rules under examination involve the
combination of all individual estimates for each alternative into a
score, then the decision rule selects the highest rated alternative.
We call these “choice with group estimation” algorithms: (a)
average winner, in which individual estimates are averaged for
each alternative and the alternative with the highest average rating
is chosen; (b) median winner, in which the individual estimates are
combined with a median estimator for each alternative; (c) social
judgment scheme winner, in which a weighted average value is
calculated for each alternative according to an exponential weight-
ing scheme proposed by Davis (Davis, 1996; Davis et al., 1997);
and (d) Borda count winner, in which each member’s rank order of
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alternatives is input into summation calculation and the value
assigned to each alternative is the sum of the individual rankings.2

Five of the group decision rules use individual judgments di-
rectly, without first computing a group estimate of the value of
each alternative. Because it is not necessary for the group to
integrate all individual judgments of every alternative before it
renders a decision, these rules are computationally more efficient
than choice with group estimation rules. We call these “choice
without group estimation” algorithms: (e) Condorcet majority rule,
all pairwise elections are held, and the alternative that wins all
elections is selected, if such a winner exists (otherwise one of the
alternatives, that received at least one first-choice vote is selected
at random); (f) plurality rule, each member votes for their first-
ranked alternative, and the alternative with the most votes is
chosen (that is, each member is allotted one equal-weight vote, and
the decision rule is to select the choice option that receives the
most votes); (g) best member rule, the member with the highest
individual accuracy over several previous trials is selected as the
group leader, and that member’s highest rated alternative is se-
lected on each trial; (h) random member rule, a member is chosen
at random from the group, and the group choice is governed solely
by that member’s judgments; and (i) group satisficing rule, a level
of aspiration threshold is set based on prior experience in foraging,
then alternatives are considered sequentially, one at a time, and the
first alternative that all members estimate to be above threshold is
selected (several threshold-setting rules were tested, and the most
successful, used here, selected the first alternative that was judged
to be one standard deviation above the mean payoff value, for all
alternatives).

Performance of the nine group decision rules is evaluated by
conducting a simulation in which groups make several thousand
choices in the simulated environment, and our evaluation is based
on the overall success of each rule in selecting the most valuable
alternative on each trial. These methods originated in mathematics
and engineering (e.g., Fishman, 1996) and were pioneered in the
behavioral sciences by Axelrod (Axelrod & Hamilton, 1981);
Payne, Bettman, and Johnson (1993); Fiedler (1996); and Giger-
enzer (Gigerenzer, Todd, & the ABC Research Group, 1999) in
applications to test the adaptive success of individual decision
strategies.

Monte Carlo Simulation Method

Basic Simulation

First, we describe the basic structure of our Monte Carlo sim-
ulation and then introduce systematic variations of its key param-
eters to provide specific tests of the performance of social decision
rules. The simulation world has two major components, environ-
mental events, namely the amount of reward (gain or loss) avail-
able at various locations, and foragers, whose fitness depends on
accurate predictions of the environmental events (Toda [1962] was
the inspiration for the present application). The state of an envi-
ronmental event (reward available) is known only probabilistically
to perceivers through proximal, partially valid cues, so each indi-
vidual faces the adaptive task of aggregating uncertain cue infor-
mation to infer whether environmental locations are likely to be
rewarding or punishing.

To illustrate the basic features of our simulation, we rely on the
metaphor of a primitive forager seeking sustenance at locations in

an uncertain physical environment. This task represents the essen-
tial features of the most general decision problem faced by any
organism: which option among a set of candidates to choose, given
uncertain information about the payoff contingent on choosing
each option. There are many modern analogues of this resource
search problem, such as choosing among uncertain financial in-
vestments, searching for information or a product on the Internet,
or seeking a job or a deal in a market (e.g., Adam, 2001; Bateson
& Kacelnik, 1998; Giraldeau & Caraco, 2000; Weitzman, 1979).
However, more fundamentally, most everyday decisions under
uncertainty can be mapped into this task framework. The front-end
individual resource judgment part of the model is a direct imple-
mentation of Brunswik’s general “Lens Model” framework for
perception and judgment (Brunswik, 1955; Cooksey, 1996; Ham-
mond & Stewart, 2001). When the number of options (locations) is
reduced to two, the task is identical to the multicue judgment
problems that have been central in Gigerenzer’s research on adap-
tive rationality (Gigerenzer & Goldstein, 1996; Gigerenzer et al.,
1999).

Structure of the environment. Suppose there are 10 locations
(for foraging) that differ in potential value. It is a fundamental
adaptive problem for a band of foragers to choose a profitable
location in which to forage in the uncertain environment. As
displayed in Figure 1, in the simulation the profitability of a
location can be estimated only imperfectly through three proximal
numerical cues with different levels of predictive validity (e.g., a
forager could make judgments under uncertainty of a location’s
value on the basis of information about past success, vegetation,
weather, predators, and so forth; or about an investment on the
basis of information about past prices, price/earnings, company
revenue, and so forth). In the basic simulation, we set up the
stochastic features of environmental events as follows. We first
generated a random number from a normal distribution N(0, 30)
and then designated it as location j’s (j � 1 . . . 10) resource value,
Qj. However, this value cannot be known directly, revealing itself
only imperfectly by three proximal cues. These cues were gener-
ated by taking each location’s true resource value (Qj) and adding
normally distributed error to it, creating a cue value composed of
true value � error. In the basic simulation, the normally distributed
error terms had standard deviations of 10, 30, and 50, and the cues
(C1, C2, C3) differed in validity as predictors of the true value of
each patch ranging from .50 to .36. to .26 on a percent-variance-
accounted-for metric. As shown in the left portion of Figure 1, the
optimal linear combination of these cues for estimation (explaining
78% of the variance of Qj) was the following:

Qj � 0.40C1 � 0.25C2 � 0.15C3. (1)

Thus, Equation 1 is the best linear representation of the uncertain
environment implemented in the basic simulation, providing a
statistical ceiling on accuracy in estimates of each location’s value.

2 The highest ranking or lowest sum wins; for example, suppose there
are three members who rank Alternative A, 2nd, 4th, and 5th in a set of 10
alternatives, Alternative A’s Borda count would be 2 � 4 � 5 � 11; (nb,
the highest possible ranking count in this example would be 3, which
would occur if all members ranked the same alternative 1st). Saari (2001)
argues that the Borda count has advantages over other social choice
procedures; Black, 1958, provides an historical introduction to the Borda
count rule.
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Foragers. As evident from the discussion above, the adaptive
goal for each individual “forager” is to combine the cues, in the
same manner as the optimal linear combination rule, to yield an
estimate of each location’s profitability. Such an individual esti-
mation process, called a judgment policy, can be represented by
how the person weights the three proximal cues to form an esti-
mate. Our simulation implemented this feature by assigning judg-
ment policies to foragers at random as follows (see the right
portion of Figure 1). Member i’s estimation of location j’s profit-
ability is expressed (i � member, j � location, and k � cue)

estimated Qij � wi.1 Cij1 � wi.2 Cij2 � wi.3 Cij3, (2)

where wi.1 is the weight forager i gives to Cue 1 in estimation; Cij1

is Cue 1’s value revealed to member i about location j. Each
perceived cue value, Cijk, has two components: a true value (Cjk),
which is common to all members, plus an environmental-
perceptual error (eijk), associated uniquely with each member i’s
perception of the cue (Cijk � Cjk � eijk). The error component, eijk,
was generated randomly from N(0, 20) in the basic simulation.
Thus, the model allows for perceptual errors—cue values are not
perceived veridically—and different judges will make different
errors. (One key question in the present research concerns the
extent to which different group decision rules damp or correct for
unsystematic errors in members’ perceptions and judgments.)

Expressing a forager’s estimation process as �wi.kcijk, the most
important element is the weighting scheme, the wi.ks in the indi-
vidual forager’s judgment policy used to aggregate the three prox-
imal cues. We relied on Dawes’s (1979; see also Brehmer & Joyce,
1988) observation that, in judgment under uncertainty tasks such
as the one in our simulations, people appear to use simplified linear
aggregation rules. Instead of using optimal weights (for example,
Equation 1), people judge as though they rely on approximate
weights and often on equal weights, getting the predictive “direc-

tion” right, but only approximating relative cue importance.
(Dawes [1979] also demonstrated that such “improper linear mod-
els” achieve levels of accuracy comparable to optimal linear ag-
gregation rules in many situations; see also Gigerenzer et al., 1999,
for analyses of other simplified estimation rules.)

Dawes’s conclusion implies that most people would weight the
three cues approximately equally in aggregation. On the basis of
this reasoning, our simulation used the following procedure in the
implementation of wi.ks. For each member of the foraging group,
we generated three random numbers and then standardized them so
that their sum equaled 1. The standardized fractions determined
that member’s judgment policy. Thus, the modal judgment policy
under this procedure is equal cue weighting, (.33, .33, .33), but
there is considerable variation in individual cue weighting rules.
The important point is that a modal forager’s estimates in the basic
simulation are not statistically optimal but, on average, are based
on equal cue weights.

Evaluating group aggregation algorithms. Given a group of
foragers who are able to judge each location’s profitability, we are
now ready to combine these individual estimates into a social
choice by means of the nine group decision rules described earlier
(see Table 1). To evaluate performance of the group decision rules,
we relied on two efficiency indices in the basic simulation. Our
first index is the difference in actual profitability between the
chosen and the best location on each trial (best location’s Q –
chosen location’s Q). This index represents opportunity loss
(missed profit) accruing from the choice. Our second index is the
squared value of the first index; the squared opportunity loss
penalizes larger losses more severely relative to small losses. The
second index reflects the adaptive principle that a small opportu-
nity loss may be tolerable, whereas a large one is not, which is
often the case in animal and human foraging in which a large loss
means ruin or even extinction (Bateson & Kacelnik, 1998; Yden-

Figure 1. Structure of the basic simulation test bed.
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berg, 1998). Table 2 also reports a third measure based on the
percentage of trials on which each group aggregation algorithm
correctly chose the best location across the 100 trials. Finally,
because of its significance in the traditional social choice analyses,
we report a measure of Condorcet efficiency, the percentage of
trials on which each rule selected the Condorcet winner (calculated
only on trials on which there was a unique winner).

In the basic simulation, each foraging team was given 100
foraging trials. Thus, these performance indices were averaged
over the 100 opportunities, yielding a mean per-trial opportunity
loss index for each team for the various group aggregation algo-
rithms we tested. We repeated this procedure for 1,000 groups
(each with 100 foraging trials) in the simulation and calculated
overall average performance for each of the nine group decision
rules.

The best member and satisficing rules required special treat-
ment, because both depended on information from performance on
the trials to instantiate the rules. The 100-trial block was used to
calculate values to select the best member for the best member
rule. We simply identified the member with the overall best
performance on an individual opportunity loss score and let that
member serve as the best member. We calculated individual op-
portunity loss scores on the basis of each member’s highest esti-
mated location on each of the 100 trials; that is, each member’s

first choice location’s value (Q) was subtracted from the best
location’s Q to calculate the member’s opportunity loss index. The
satisficing rule-stopping criterion was selected to maximize group
performance. Several criterion-setting rules were tried, and the
most successful was based on the theoretical standard deviation for
the locations’ profit values (used to generate profit values by the
simulation). The first location encountered, in a random sample
sequence, that was estimated to have a value one standard devia-
tion or more about the mean value by all members, was selected on
each trial. If no location was “satisfactory,” a location was chosen
at random on that trial (this occurred on less than 3% of the trials).

Results of the Basic Simulation

Recall that we have two types of group aggregation algorithms,
with and without group estimation, differing in the amount of
computation required to calculate the group choice. Some algo-
rithms (e.g., averaging, median rule) require groups to aggregate
members’ individual estimates for each of 10 locations first, before
they can yield a final group choice. Other algorithms (e.g., major-
ity rule, best member rule) do not have an aggregation phase and
simply operate only on members’ first choice preferences (or a
limited number of preferences). In the basic simulation, we exam-

Table 2
Performance of Each Group Decision Rule for the Simulation Test Bed (N � 1,000 100-Hunt Trials)

Group decision rule

Opportunity loss
Squared opportunity

loss
Best alternative

picked %

Condorcet efficiency
(% picking the

Condorcet winner)M SD M SD

5-member groups

With group estimation (continuous or rank)
Averaging �4.27 1.03 87.59 32.71 65.8 91.3
Median �4.73 1.08 102.22 35.85 64.8 90.0
Davis’s (1996) SJSa �6.00 1.28 146.56 48.34 62.3 82.8
Borda rule �4.51 1.03 95.07 33.05 65.0 94.4

Without group estimation
Condorcet majority (unique winner only) �4.43 1.10 93.54 34.69 65.7
Condorcet majority (all) �4.65 1.10 99.54 35.94 64.8
Majority/plurality �4.80 1.06 105.88 35.95 64.2 93.7
Best member �5.29 0.88 120.87 30.15 62.7 75.3
Random member �7.00 1.31 186.19 52.99 57.8 73.9
Group satisficing �6.45 1.35 179.52 66.19 59.5 81.5

12-member groups

With group estimation (continuous or rank)
Averaging �3.92 0.90 75.79 26.19 67.4 92.0
Median �4.13 0.94 82.23 28.34 67.0 91.4
Davis’s (1996) SJSa �4.63 1.01 98.66 33.27 65.9 87.5
Borda rule �3.99 0.89 77.96 26.46 67.0 92.9

Without group estimation
Condorcet majority (unique winner only) �4.02 0.90 79.33 26.80 67.0
Condorcet majority (all) �4.03 0.90 79.77 27.13 66.9
Majority/plurality �4.15 0.92 83.36 27.77 66.7 91.6
Best member �4.76 0.76 102.71 24.96 64.6 72.6
Random member �7.09 1.22 189.44 52.31 57.6 70.0
Group satisficing �4.75 1.00 106.19 35.97 64.2 85.4

a The social judgment scheme (SJS) estimate is an average of all members’ quantitative judgments, with each judgment weighted by its centrality in the
distribution of all judgments (see Davis, 1996, for the specific calculations).
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ined performances of these decision algorithms for two different
group sizes, namely 5- or 12-person groups.

Table 2 displays mean performances of the nine group decision
rules. As can be seen from the table, aggregation algorithms with
group estimation (top half of the table) tend to perform better than
algorithms without group estimation (bottom half) on all measures
of performance. It is not surprising that the averaging rule is
overall winner on adaptive success measures, as the rule is essen-
tially an additive linear algorithm operating in an environment in
which cues to resources are linearly related to true resource values.
We report two Condorcet winner evaluations, one calculated on
only the trials (97%) in which there was a unique winner and the
other calculated across all trials by means of picking a winner from
the tied top candidates when there was no unique winner (the
second calculation is used in all comparisons with other rules). In
general, the more computationally demanding algorithms—aver-
aging, median, Borda, and Condorcet winner—outperform the
simpler algorithms.

The plurality rule stands out for its high level of achievement,
given its simplicity. This rule is fast and frugal in terms of
necessary computations (operating only on members’ first prefer-
ences), and its performance is comparable to much more compu-
tationally demanding algorithms, such as the averaging, median,
and Borda rules. It even outperforms the social judgment scheme-
aggregation rule, which is a continuous scale analog of majority
aggregation (Davis, 1996; Davis et al., 1997). These conclusions
hold for both 5-person and 12-person groups.

Another important result is that the plurality rule also beats the
best member rule, whose choices adhere most closely to those of
the optimal cue utilization equation (Equation 1). Recall that in our
simulation, the modal members’ judgment policy is a nonoptimal,
equal cue-weighting combination rule. The observed superiority of
plurality rule to the best member rule is reminiscent of Dawes’s
(1979) conclusion concerning “the robust beauty of improper
linear models,” but at the group rather than the individual,
decision-making level.

The Condorcet winner has been central in analyses of preferen-
tial social choice, and it is interesting to observe its performance in
an accuracy-based test. It performs quite well, placing third behind
the Borda and the ecologically rational averaging rule. It is also
instructive to see that the Borda and plurality rules achieve com-
parable and high levels of Condorcet efficiency, picking the unique
Condorcet winner about 95% of the time when there is one.

Testing the Generality of the Initial Findings

In the following, we vary several key parameters of the basic
simulation to systematically examine the robustness of the com-
parative success of the plurality rule. In this extended simulation,
we focus on five of the original nine algorithms (average winner,
Condorcet winner, best member rule, random member rule, and
plurality rule) and compare their performance under a wide range
of simulation parameters. As the two group sizes and the two
efficiency measures used in the basic simulation yielded qualita-
tively parallel results, the extended simulation examines the per-
formance of 12-member groups only on the mean opportunity loss
index.

Cue validity. A key parameter of the stochastic environment is
the degree of predictive validity of three proximal cues for esti-

mating the criterion (profitability of a location). In the basic
simulation, we set up the validity of the three cues so that the
proportions of variance in the criterion explained by the best cue,
the second best cue, and the worst cue were 50%, 36%, and 26%,
respectively (Equation 1).

What if we vary the relative validity of the three proximal cues
systematically? Are the group decision rules affected differentially
by changes in relative cue validity? In the extended simulation, we
kept the predictive validity of the best cue constant (explaining
50% of the variance), while changing the validity of the other two
cues systematically. Figure 2A displays mean opportunity losses of
the four decision rules under different levels of cue validity. The
abscissa represents discrepancy in predictive validity between the
best and the worst cue in terms of the ratio of explained variance.
The 1.9 point on the abscissa corresponds to the original cue
structure used in the basic simulation (1.9 � 50%/26%).

Figure 2A shows that, compared with the other two algorithms,
the average winner and the plurality rule perform in a similar
manner. In a sense, the plurality rule may serve as a computation-
ally economical substitute for the averaging rule in group decision
making.

Second, the superiority of the plurality rule over the best mem-
ber rule, observed in the basic simulation, diminishes and is
eventually reversed with increasing differences in cue validity. For
example, when the best–worst cue ratio is 3.4 (that is, the worst
cue explains only 15% of the variance in the criterion, whereas the
best cue explains 50%), the best member rule outperforms the
plurality rule. Recall that the best member’s judgment policy will
be closer to the optimal equation than a modal member’s judgment
policy. The plurality rule performs at a level closer to the modal
member than the best member rule, and the difference between
best member and modal member increases as the differences
between optimal best cue and worst cue weights increase. Thus,
with the increase in discrepancy of predictive validity between the
best and worst cues, the best member rule has an increasing
advantage over the plurality rule (and average winner rule).3

Performance with incomplete information. The simulation so
far has assumed complete information for each member; each
forager had access to information about all three cues for all 10
locations. What if each forager has access to cue information about
only a subset of the 10 locations? These incomplete information
cases represent the classic rationale for group decisions: If each
member has only part of the information necessary to solve a
problem and different members have nonshared information, then
several heads are almost certainly better than one. To examine this
issue, we introduced a new situation in which information on each
location was available to each forager with a probability less than
unity. Each forager produces estimates for a subset of 10 locations,
and the group as a whole must operate on incomplete individual
inputs. Figure 2, panels B and C, shows results from two such
incomplete information situations, in which the probability of
individual accessibility to each location is set at 0.8 or 0.6, (in

3 We experimented with other manipulations of the statistical structure
of the simulated environment, specifically, manipulating average cue in-
tercorrelations. However, these variations had no effects on the relative
performance of the group decision rules, so we do not report them in detail
here.

501MAJORITY RULES



other words, on average, each member has information only about
8 or 6 of the full choice set of 10 locations).

First, compared with the other two decision rules, the average
winner, plurality, and Condorcet winner rules behave very simi-
larly under incomplete information conditions. Second, missing
information has a larger detrimental impact on the best member
rule than on the plurality rule. Compared with the complete infor-
mation case (see Figure 2A), the best member rule degrades
rapidly with increases in missing information, whereas the plural-
ity, Condorcet winner, and the average winner rules are affected
only slightly. This implies that the plurality rule performs the
information-pooling function effectively at a collective level by
relying on foragers’ first preferences. Finally, however, when
information becomes very incomplete (0.6 levels), the voting rules
(plurality, Condorcet winner) fall behind the ecologically rational
averaging rule. It is obvious how the averaging rule serves such an
information-pooling function statistically, but the fact that the
same result can be achieved by the far simpler majority algorithm
is important and nonobvious. Again, this illustrates that the plu-
rality rule can serve as a computationally efficient substitute for
the averaging rule in group decision making under uncertainty.

Distributions of resources in the environment. In the original
simulation, we generated locations’ profitability values randomly
from a normal distribution. Normality is a reasonable first hypoth-
esis about actual uncertain environments, but what if the profit-
ability distribution is skewed? The most extreme (and adaptively
most challenging) case of a skewed environment would be a
“barren” environment in which only one location is profitable,
whereas the other nine locations are not. We examined perfor-
mance of the five aggregation algorithms under such a barren
environment, while manipulating the other parameters in the same
manner as described above.

The results from previous tests were replicated under the barren
environment. Briefly, the averaging rule and the plurality rule
function in a similar manner. The plurality rule (and the averaging
rule as well) beats the best member rule, as long as discrepancy in
cue validity is not extreme. Furthermore, incompleteness of infor-
mation enhances the superiority of the plurality rule over the best
member rule even more dramatically in the barren environment
than it does in the richer environment. In a barren environment,
incomplete information is often fatal to the functioning of the best
member rule, whereas it is less detrimental to the plurality rule.

A Behavioral Study of Nominal Groups of Human
Decision Makers

The computer simulation studies supported our hypothesis that
the plurality rule is both economical in computational terms and
achieves high levels of accuracy in adaptive group decision mak-
ing under uncertainty. This result is in line with the empirical
finding that majority aggregation can often summarize actual
group decision outcomes well, especially when some uncertainty is
associated with the decision and/or task environment (see Kameda,
Tindale, & Davis [2003] for a review of group decision-making
studies conducted in industrialized societies such as the United
States and Japan; see Boehm [1996] for a review of ethnographic
data on group decision making in primordial societies).

Although these two lines of findings converge nicely under the
adaptation theme, there still remain some gaps between our com-

Figure 2. Performance of group decision rules as a function of
judgment cue validity (cue discrepancy; best/worst cue ratio in
terms of explained variance). A: Complete information, p � 1.0.
B: Incomplete information, p � .08. C: Incomplete information,
p � .6.
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puter simulation results and the empirical group decision-making
literature. One important limit may derive from the artificiality of
individual judgments used in our computer simulation. In the
simulation, we generated individual judgments using a Brun-
swikian framework to evaluate various group aggregation algo-
rithms. Our method of generating individual judgment policies
(wi.k’s in Equation 2) was inspired by an empirical finding in
behavioral decision making, yet artificiality in simulating the in-
dividual judgment process may have biased our conclusions. It
would be desirable if we could use actual individual judgments
under uncertainty as inputs to group decision making algorithms.
For this reason, we collected data from human research partici-
pants who actually made a series of judgments and choices under
uncertainty. We then formed nominal groups by resampling indi-
viduals from this data set and compared the performance of four
group decision rules in the same manner as in the Monte Carlo
simulations. It is important to note that we did not study actual
interacting groups; rather we used individual human judgments in
place of our individual judgment simulation and relied on
computer-created nominal groups to study the effects of alternate
group decision rules.

Collection of Behavioral Data

Participants. Participants were 129 (82 male and 47 female)
undergraduate students enrolled in introductory psychology
classes at Hokkaido University, Hokkaido, Japan. Participants
were paid contingent on their performances in the experiment
(M � 382 yen, SD � 200 yen; approximately 120 yen � $1 US).

Experimental task. The experimental task was based on the
Brunswikian framework used in the computer simulations. Partic-
ipants made a series of judgments and choices under uncertainty in
which the state of environmental event (profitability of a company)
was known only stochastically by means of three statistical cues.
Two kinds of environmental structure were created: one with a
small cue-validity discrepancy and the other with a larger discrep-
ancy. The former is the original environment implemented in the
basic Monte Carlo simulation in which the ratio of the best and
worst cues in terms of explained variances was 1.9. The latter is
one of the environments examined in the extended simulation in
which the best and worst cue ratio is 3.4. (The best linear repre-
sentation of this second environment is given by Q � 0.50C1 �
0.20C2 � 0.10C3.) The two environmental structure conditions
were introduced to verify that cue discrepancy had the same
impact on performance of group aggregation algorithms based on
human judgments as had been observed in the Monte Carlo sim-
ulations (cf. Figure 2A).

Procedure. The experiment was run individually on labora-
tory computers. On arrival, participants were randomly assigned to
one of the two cue conditions mentioned above (low cue discrep-
ancy vs. high cue discrepancy). The experiment had three phases.
In the first phase, participants were asked to choose the “most
profitable company” out of 10 on the basis of three statistical cues
provided for each company (analogous to forage “locations” in the
original simulation). As in the simulation studies, perceived cue
values for each company could be different for each participant
because of perceptual errors, although true cue values were held
identical across participants. Participants were told that their ex-
perimental payment would be contingent on choice accuracy.

There were 50 such choice trials in total. After each choice,
participants were informed whether the choice was correct, along
with their cumulative reward up to that trial.

In the second phase, we asked participants to report on their
judgment strategies used to integrate cue information during the
first phase. Five strategy alternatives were provided: equal cue
weighting (Dawes, 1979); take-the-best strategy (Gigerenzer et al.,
1999); weighted additive (regression) strategy; configural weight-
ing (e.g., Mellers, 1980); or any other strategy described by the
participant. In all experimental conditions, the most common strat-
egy was described as equal cue weighting, followed by unequal-
weight regression-like additive rule, and then configural-weighting
rules. Among the explicit responses offered to participants, the
take-the-best strategy was selected least frequently.

In the third phase of the experiment, participants were provided
only one company’s cue information on each trial and asked to
estimate its profitability numerically. There were 30 such estima-
tion trials. Participants were again instructed that their experimen-
tal payment would be contingent on the accuracy of their estimates
(no performance feedback, however, was provided during the
estimation phase).

Nominal Group Analysis

With the individual human judgment data, it is now possible to
evaluate performance of the group decision rules by forming
nominal groups. Here, we focus on individual choice data col-
lected in the first phase of the behavioral experiment. For each of
the two cue conditions, we randomly composed 1,000 nominal
groups by a resampling procedure and evaluated performances of
three aggregation algorithms: the plurality rule, the best member
rule, and the random member rule. To reduce participants’ cogni-
tive load, we did not ask them to provide profitability estimates for
10 companies in the initial choice phase. Instead, we asked only
for their top preferences on each of 50 trials. (As individual,
per-company judgments are not available, the average winner
cannot be implemented in this analysis.)

Figure 3, panels A and B, displays results of the nominal group
analysis (5-person groups and 12-person groups, respectively) in
the small cue-discrepancy environment. Recall that participants
made 50 choices over time. In Figure 3, we summarized these 50
choice opportunities into 10 blocks and plotted mean performance
of the group decision rules for each block.

It is obvious that participants improved in accuracy over time.
For example, in 5-person groups (see Figure 3A), mean opportu-
nity loss by the random member rule (a benchmark strategy of
randomly picking one member’s individual preference as the
group’s choice) was reduced from �10.6 in the first block to �3.8
in the last block.

How did such individual learning in the uncertain environment
affect performances of the plurality rule versus the best member
rule? As can be seen from Figure 3A, the superiority of the
plurality rule to the best member rule was firmly established in the
early trial blocks. After the second block, the plurality rule yielded
a smaller mean opportunity loss than the best member rule, except
for turbulence in Block 8. This tendency is accentuated in 12-
person groups, as shown in Figure 3B. These patterns replicate the
results of the Monte Carlo simulation (see Table 2).
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We next turn to the large cue-discrepancy environment. Figure
4, panels A and B, displays results of a nominal group analysis. As
can be seen from the graphs, performance of the plurality rule and
the best member rule was much closer here, in contrast to the small
cue-discrepancy environment examined above. The plurality rule
outperformed the best member rule in only 6 of 10 blocks. This
pattern is again qualitatively consistent with the original simula-
tion results in that the superiority of the plurality rule to the best
member rule was gradually lost and could be even reversed in
large cue-discrepancy environments (cf. Figure 2A).

Individual Judgment Policies

The nominal group analysis in which we used actual hu-
man judgments yielded results comparable to those we ob-
tained in the computer simulation studies. This suggests that
the assumptions underlying our computer simulations ap-
proximate the patterns of actual human judgments under
uncertainty.

One of the central assumptions in the Monte Carlo simulation
was that the modal member judgment policy could be captured
by an equal cue-weighting integration process. As noted above,

most participants reported relying on equal cue-weighting pol-
icies. Besides calculating subjective self-reports, we also cal-
culated a quantitative judgment policy for each participant by
regression analysis of the estimation data collected in the last
phase of the experiment. Average beta weights, summarizing
impact of the three cues, were .31, .25, and .26 in the small
cue-discrepancy environment and .22, .30, and .26 in the large
cue-discrepancy environment. These patterns were statistically
different from the optimal linear regression weights but indis-
tinguishable from an equal cue-weighting rule. Together with
the parallel performance patterns of group aggregation algo-
rithms described earlier, these results provide more empirical
evidence for the plausibility of the assumptions underlying our
Monte Carlo simulation.

General Discussion

The Marquis de Condorcet initiated a long-running evaluation
of the quality of majority rule decisions with two monumentally
important conclusions. The bad news was stated in his voting
paradox: The majority rule cannot satisfy absolutely elementary
criteria for coherent, decisive social choice procedures. The good

Figure 4. Performance of nominal decision making groups as a function
of experience making judgments in a large cue-discrepancy environment.
A: 5 members. B: 12 members.

Figure 3. Performance of nominal decision making groups as a function
of experience making judgments in a small cue-discrepancy environment.
A: 5 members. B: 12 members.
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news was stated in his jury theorem: The majority rule can enhance
the accuracy of “above chance accurate” group members, and
under some conditions, it could approach perfect levels of accu-
racy. Condorcet and later analysts relied on mathematical deriva-
tions of the implications of the majority rule to evaluate its use-
fulness under relatively limited conditions. What is new in the
present analysis is our use of a stochastic simulation method that
yields new results concerning the comparative accuracy of the
majority rule and its robustness across variations in environmental
conditions.

Both computer simulations and a nominal group analysis that
used actual human judgments revealed that, among frugal algo-
rithms, the plurality rule is adaptively the most efficient across a
wide range of environmental variations. Two comparisons, in
particular, provide strong evidence for the “robust beauty of ma-
jority rule.”

Plurality Versus Averaging

First, the plurality rule and the average winner strategy consis-
tently performed in a similar manner, even though the underlying
computations are very different for the two algorithms. Variations
of key parameters in the simulation, such as discrepancy in cue
validity, degree of information completeness, skewness in envi-
ronmental events, and different group sizes had essentially the
same effects on the performance of both aggregation rules. Al-
though at a computational level averaging and plurality voting are
obviously different, at an abstract level they share some perfor-
mance characteristics. Both have an additive character in that
every member’s contribution is summed up in the central aggre-
gation process. The plurality rule precedes the summation with an
individual “winner take all” computation that puts all the weight
on the favored alternative. This could be viewed as a weighted-
average-like computation, but with extreme weights (0s and 1s).
While the first-step computation in the average winner strategy is
an equal-weight calculation, the similar performance of the two
rules leads us to emphasize the analogical correspondence between
them.

One essential functional similarity that leads the two rules to
mimic one another is that both effectively “cancel out” random
errors in the environment. To illustrate, suppose for the moment
that individual judgment policy is optimal as expressed in Equa-
tion 1. Then, as long as environmental and perceptual errors are
unsystematic, averaging of individual estimates provides an unbi-
ased estimate of the true target value (profitability of a location in
the foraging domain). The same error cancellation function is also
served by the plurality aggregation of individual first preferences,
as unsystematic errors that happen to bias one member’s prefer-
ences are unlikely to be shared with others members. Thus, un-
systematic perceptual errors can be reduced by both rules, though
the error-reduction process occurs on different levels of measure-
ment for the two procedures (at an interval scale level for the
average winner vs. at an ordinal scale level for the plurality rule).

Another, less obvious functional similarity between the two
rules involves the information-pooling function. Both the average
winner and the plurality rule were only slightly affected by missing
information. Even if a substantial amount of information was
missing, both rules did not degrade much, compared with other
rules (see Figure 2, panels B and C). Under the average winner

rule, such robustness against missing information is readily under-
standable. Even when information about a candidate is missing for
some members, the mean of individual estimates still provides a
reliable, unbiased estimate of the target value (location profitabil-
ity). The average winner rule effectively pools whatever informa-
tion is available to members. Our finding that a similar
information-pooling function is achieved by the plurality rule,
which operates only on members’ first preferences, is not intu-
itively obvious and is theoretically and practically important.

Given these essential functional similarities, plurality aggrega-
tion serves as a computationally more frugal substitute for aver-
aging in group decision making under uncertainty. Whenever
averaging yields an adaptive group choice, the plurality rule serves
as its fast-and-frugal counterpart.

Plurality Versus Best Member

In most actual decision-making situations, usually the group
aggregation algorithms with group estimation are impractical in
terms of procedural costs; choice strategies that are cognitively
less demanding are the only viable options in many situations. The
plurality rule and the best member rule are the most representative
social decision rules in the world of practical decision making.
Indeed, in the social choice tradition (Arrow, 1951; Mueller,
1989), the two rules are pitted against each other (as democratic vs.
autocratic regimes) in terms of logical coherence. However, how
do these two rules compare from an adaptive perspective? This
question could be answered analytically, if no environmental un-
certainty were involved in the decision setting (some example
derivations are available from the authors). However, in an uncer-
tain environment, as represented by the Brunswikian framework,
analytical solutions would be formidable.

Thus, we conducted Monte Carlo computer simulations to sys-
tematically vary key parameters. The results showed that, even if
modal members’ judgment policies were nonoptimal in the statis-
tical sense, the plurality rule outperformed the best member rule
under a wide range of parameter values. The only exception to this
observation is in a complete-information case in which the cue
discrepancy is quite high. Under these conditions, the best member
rule yielded substantially better performances than the plurality
rule (see the 3.4 point in Figure 2A). However, we believe that this
reversal may be of little significance in real decisions. First, as we
discussed earlier, the assumption of complete information is usu-
ally violated in the everyday world. As is evident in Figure 2,
panels B and C, the plurality rule performs well under incomplete
information conditions, consistently outperforming the best mem-
ber rule.

Our simulation assumed that individual judgment policies were
unresponsive to the environmental cue structure, with the modal
policy being equal cue weighting. However, this assumption may
be unrealistic if the discrepancy in cue validities is extreme.
Individuals do recognize dramatic differences in cue validities and
should adjust their judgment policies to unequal weight algo-
rithms. For example, what if modal individuals shift their policy
from equal cue weighting to take-the-best strategy? Under the
large cue discrepancy conditions, the take-the-best strategy is close
to the statistically optimal linear combination (cf. Gigerenzer et al.,
1999). Then, the plurality rule, which is good at handling unsys-
tematic errors, should perform close to the best member rule.
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Indeed, nominal group analysis using actual human judgments
provided some support for this speculation. Even in the large-cue
discrepancy condition (corresponding to the 3.4 case in Figure
2A), the plurality rule performed as well as the best member rule.
This suggests that the adaptive efficiency of the plurality rule may
be even more robust in actual decision making than in our
simulations.

The Condorcet Majority Winner

The Condorcet winner has been central in social choice analyses
of the performance of group decision rules. It is not a practical
rule; we know of no actual decision-making groups that attempt to
apply it, but it has served as the standard against which other
voting and scoring rules have been measured, in theory and in
practice of political elections (cf. Regenwetter, Adams, & Grof-
man, 2002; Regenwetter, Marley, & Grofman, 2002). Our simu-
lation provides a first test of its performance against an accuracy
criterion, and it fares well, being beaten only slightly by the Borda
and averaging rules. It is also instructive that the Borda and
plurality rules track the behavior of the much more computation-
ally demanding Condorcet winner calculations, matching it on
approximately 95% of the trials in which there was a unique
winner.

Conclusions

In this article, we have explored the performance of fast-and-
frugal group decision rules with stochastic simulations and a
nominal group analysis under a Brunswikian model of the
environment-judgment system. Although we believe that the Brun-
swikian framework is a useful research paradigm to represent key
features of decision making under uncertainty, the paradigm can be
enriched further by incorporating other adaptively critical environ-
mental elements. One such element may be environmental insta-
bility. For example, the archeologist Potts (1996) argued that
ecological instability, including climate changes, fluctuations in
food sources, and other survival-relevant conditions, was a funda-
mental condition of early hominid evolution. Environmental insta-
bility is also an essential feature in the modern society, in which
technologies, economies, and cultures are changing rapidly.

The present study assumed an uncertain but stationary environ-
ment. However, if temporal instability of the environmental struc-
ture is indeed realistic and adaptively significant, we need to
systematically study these conditions. For example, if the environ-
mental structure changes over time, an individual judgment policy
effective at time t may be maladaptive at time t � 1. Such
instabilities will provide a challenging test for the adaptive value
of the majority rule. How various group decision rules will per-
form in unstable environments is an open question. Is a majority
rule still adaptive in an uncertain and nonstationary environment
(cf. Boyd & Richerson, 1985; Henrich & Boyd, 1998; Kameda &
Nakanishi, 2002, 2003)? How is individual learning reflected in
group adaptation to environmental shifts (Busemeyer & Myung,
1992; Camerer, 1999; Massey & Wu, 2003)?

Another theoretical issue concerns motivational aspects in group
decision making. In this article, we focused only on cognitive
aspects of decision making and assumed no special role for mem-
bers’ motivation; we essentially assumed that members are equally

motivated to provide good individual estimates. Although this
assumption is reasonable in individual decision making in which
one’s fate is contingent solely on one’s own decisions, it may not
always be the case in group decision making. When individuals’
inputs are pooled collectively, “social loafing” in which some
members free ride on others’ efforts often degrades group perfor-
mance. In the context of group decision making, members’ in-
volvement in exhaustive information search and demanding delib-
erations may not be guaranteed. What happens to group
performance if we add individual information search and voting
costs to the social decision system (Kameda & Nakanishi, 2002,
2003; Kameda, Takezawa, & Hastie, 2003)?

One of the most fundamental problems in social decision mak-
ing is the question of how to aggregate people’s judgments or
preferences into a collective choice. Social choice theorists (Ar-
row, 1951; Mueller, 1989) have approached this issue from the
logical perspective; a group aggregation rule that potentially yields
logical incoherence (e.g., intransitivity, deadlocking) in decisions
is regarded as unacceptable. In contrast, we took an adaptive
perspective in evaluating group decision rules and found that the
majority rule, although not perfect in terms of logical coherence
(e.g., Condorcet voting paradox), nonetheless supports robust
adaptively viable decisions under uncertainty. Perhaps, the “robust
beauty of the majority rule” explains its wide popularity in modern
as well as primordial societies. When exploring the Northwest
Territory in 1805, Captain Clark used the majority rule to decide
where to set his winter camp (Ambrose, 1996; Moulton, 2003).
Everyone in the expedition, including servants and native guides,
had an equal vote in the majority rule decision. This social choice
procedure may have been adaptive as well as fitting the democratic
ideals he cited in his personal diary of the expedition.

References

Adam, K. (2001). Learning while searching for the best alternative. Jour-
nal of Economic Theory, 101, 252–280.

Ambrose, S. E. (1996). Undaunted courage: Meriwether Lewis, Thomas
Jefferson, and the opening of the American West. New York: Touch-
stone Press.

Anderson, L. R., & Holt, C. A. (1997). Information cascades in the
laboratory. American Economic Review, 87, 847–862.

Arrow, K. J. (1951). Social choice and individual values. New Haven, CT:
Yale University Press.

Austin-Smith, D., & Banks, J. S. (1996). Information aggregation, ratio-
nality, and the Condorcet jury theorem. American Political Science
Review, 90, 34–45.

Axelrod, R., & Hamilton, W. D. (1981, March 27). Evolution of cooper-
ation. Science, 211, 1390–1396.

Bateson, M., & Kacelnik, A. (1998). Risk-sensitive foraging: Decision
making in variable elements. In R. Dukas (Ed.), Cognitive ecology: The
evolutionary ecology of information processing and decision making
(pp. 297–341). Chicago: The University of Chicago Press.

Black, D. (1958). The theory of committees and elections. Cambridge, UK:
Cambridge University Press.

Boehm, C. (1996). Emergency decisions, cultural-selection mechanics, and
group selection. Current Anthropology, 37, 763–793.

Bottom, W. P., Ladha, K., & Miller, G. J. (2002). Propagation of individual
bias through group judgment: Error in the treatment of asymmetrically
informative signals. Journal of Risk and Uncertainty, 25, 147–163.

Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process.
Chicago: Chicago University Press.

506 HASTIE AND KAMEDA



Brehmer, B., & Joyce, C. R. B. (Eds.). (1988). Human judgment: The SJT
view. Amsterdam: North-Holland.

Brunswik, E. (1955). Representative design and probabilistic theory in
functional psychology. Psychological Review, 62, 193–217.

Busemeyer, J. R., & Myung, I. J. (1992). An adaptive approach to human
decision making: Learning theory, decision theory, and human perfor-
mance. Journal of Experimental Psychology: General, 121, 177–194.

Camerer, C. F. (1999). Experience-weighted attraction learning in normal-
form games. Econometrica, 67, 827–874.

Chamberlin, J. R., Cohen, J. L., & Coombs, H. C. (1984). Social choice
observed: Five presidential elections of the American Political Science
Association. Journal of Politics, 45, 479–502.

Condorcet, M. (1994). Essay on the application of probability analyses to
decisions returned by a plurality of people. In I. McLean & F. Hewitt
(Eds. & Trans.), Condorcet: Foundations of social choice and political
theory (pp. 11–36). Brookfield, VT: Edward Elgar. (Original work
published 1785)

Conradt, L., & Roper, T. J. (2003). Group decision-making in animals.
Nature, 421, 155–158.

Cooksey, R. W. (1996). Judgment analysis: Theory, methods, and appli-
cations. San Diego, CA: Academic Press.

Davis, J. H. (1973). Group decision and social interaction: A theory of
social decision schemes. Psychological Review, 80, 97–125.

Davis, J. H. (1982). Social interaction as a combinatorial process in group
decision. In H. Brandstatter, J. H. Davis, & G. Stocker-Kreichgauer
(Eds.), Group decision making (pp. 101–128). London: Academic Press.

Davis, J. H. (1996). Group decision making and quantitative judgments: A
consensus model. In E. Witte & J. H. Davis (Eds.), Understanding group
behavior: Consensual action by small groups (Vol. 1, pp. 35–59).
Mahwah, NJ: Erlbaum.

Davis, J. H., Kerr, N. L., Atkin, R. S., Holt, R., & Meek, D. (1975). The
decision processes of 6- and 12-person mock juries assigned unanimous
and two-thirds majority rules. Journal of Personality and Social Psy-
chology, 32, 1–14.

Davis, J. H., Zarnoth, P., Hulbert, L., Chen, X.-p., Parks, C., & Nam, K.
(1997). The committee charge, framing interpersonal agreement, and
consensus models of group quantitative judgment. Organizational Be-
havior and Human Decision Processes, 72, 137–157.

Dawes, R. M. (1979). The robust beauty of improper linear models.
American Psychologist, 34, 571–582.

Feddersen, T., & Pesendorfer, W. (1998). Convicting the innocent: The
inferiority of unanimous jury verdicts under strategic voting. American
Political Science Review, 92, 23–36.

Feld, S. L., & Grofman, B. (1992). Who’s afraid of the big bad cycle?
Evidence from 36 elections. Journal of Theoretical Politics, 4, 231–237.

Fiedler, K. (1996). Explaining and simulating judgment biases as an
aggregation phenomenon in probabilistic, multiple-cue environments.
Psychological Review, 103, 193–214.

Fishman, G. S. (1996, 2nd ed.). Monte Carlo. New York: Springer-Verlag.
Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal

way: Models of bounded rationality. Psychological Review, 103, 650–
669.

Gigerenzer, G., Todd, P. M., & the ABC Research Group. (1999). Simple
heuristics that make us smart. New York: Oxford University Press.

Gigone, D., & Hastie, R. (1997). Proper analysis of the accuracy of group
judgments. Psychological Bulletin, 121, 149–167.

Giraldeau, L.-A., & Caraco, T. (2000). Social foraging theory. Princeton,
NJ: Princeton University Press.

Grofman, B., & Feld, S. (1988). Rosseau’s general will: A Condorcetian
perspective. American Political Science Review, 82, 567–576.

Guarnaschelli, S., McKelvey, R. D., & Palfrey, T. R. (2000). An experi-
mental study of group decision rules. American Political Science Re-
view, 94, 407–423.

Hammond, K. R. (1996). Human judgment and social policy: Irreducible

uncertainty, inevitable error, and unavoidable injustice. New York:
Oxford University Press.

Hammond, K. R., & Stewart, T. R. (2001). The essential Brunswik:
Beginnings, explications, and applications. New York: Oxford Univer-
sity Press.

Hastie, R. (1986). Review essay: Experimental evidence on group accu-
racy. In B. Grofman & G. Guillermo (Eds.), Information pooling and
group decision making (Vol. 2, pp. 129–157). Greenwich, CT: JAI
Press.

Hastie, R., Penrod, S. D., & Pennington, N. (1983). Inside the jury.
Cambridge, MA: Harvard University Press.

Hastie, R., & Rasinski, K. A. (1988). The concept of accuracy in social
judgment. In D. Bar-Tal & A. W. Kruglanski (Eds.), The social psy-
chology of knowledge (pp. 193–208). Cambridge, UK: Cambridge Uni-
versity Press.

Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission
and the emergence of between-group differences. Evolution and Human
Behavior, 19, 215–241.

Hill, G. W. (1982). Group versus individual performance: Are N � 1 heads
better than one? Psychological Bulletin, 91, 517–539.

Hinsz, V. B., Tindale, R. S., & Vollrath, D. A. (1997). The emerging
conceptualization of groups as information processors. Psychological
Bulletin, 121, 43–64.

Hung, A. A., & Plott, C. R. (2001). Information cascades: Replication and
an extension to majority rule and conformity-rewarding institutions.
American Economic Review, 91, 1508–1520.

Janis, I. L. (1972). Victims of groupthink. Boston: Houghton Mifflin.
Kameda, T., & Nakanishi, D. (2002). Cost-benefit analysis of social/

cultural learning in a non-stationary uncertain environment: An evolu-
tionary simulation and an experiment with human subjects. Evolution
and Human Behavior, 23, 373–393.

Kameda, T., & Nakanishi, D. (2003). Does social/cultural learning increase
human adaptability? Rogers’s question revisited. Evolution and Human
Behavior, 24, 242–260.

Kameda, T., Takezawa, M., & Hastie, R. (2003). The logic of social
sharing: An evolutionary game analysis of adaptive norm development.
Personality and Social Psychology Review, 7, 2–19.

Kameda, T., Tindale, R. S., & Davis, J. H. (2003). Cognitions, preferences,
and social sharedness: Past, present, and future directions in group
decision-making. In S. L. Schneider & J. Shanteau (Eds.), Emerging
perspectives on judgment and decision research (pp. 458–485). Cam-
bridge, UK: Cambridge University Press.

Kerr, N. L., Stasser, G., & Davis, J. H. (1979). Model-testing, model-
fitting, and social decision schemes. Organizational Behavior and Hu-
man Decision Processes, 23, 339–410.

Kerr, N. L., & Tindale, R. S. (2004). Group performance and decision
making. Annual Review of Psychology, 55, 623–655.
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